Для получения потока свободных электронов в электронных приборах имеется специальный металлический или полупроводниковый электрод — катод.
Для того чтобы электроны могли выйти за пределы катода, необходимо сообщить нм извне некоторую энергию, достаточную для преодоления противодействующих сил. В зависимости от способа сообщения электронам добавочной энергии различают такие виды электронной эмиссии:
- термоэлектронную, при которой дополнительная энергия сообщается электронам в результате нагрева катода;
- фотоэлектронную, при которой на поверхность катода воздействует электромагнитное излучение;
- вторичную электронную, являющуюся результатом бомбардировки катода потоком электронов или ионов, двигающихся с большой скоростью;
- электросатическую, при которой сильное электрическое поле у поверхности катода создает силы, способствующие выходу электронов за его пределы.
Рассмотрим более подробно каждый из перечисленных видов электронной эмиссии.
Термоэлектронная эмиссия. Явление термоэлектронной эмиссии было известно уже в конце ХVIII в. Ряд качественных закономерностей этого явления установили В. В. Петров (1812), Т. Л. Эдисон (1889) и др. К 30-м годам нашего столетия были определены основные аналитические зависимости термоэлектронной эмиссии.
При нагревании металла распределение электронов по энергиям в зоне проводимости изменяется (рис, 1, кривая 2). Появляются электроны с энергией, превышающей уровень Ферми. Такие электроны могут выйти за пределы металла, и результате чего возникает эмиссия электронов. Величина тока термоэлектронной эмиссии зависит от температуры катода, работы выхода и свойств поверхности (уравнение Ричардсона — Дэшмана):
где Jе — плотность тока эмиссий, А/см²; А — эмиссионная постоянная, зависящая от свойств излучаощей поверхности и равная для большинства чистых металлов — 40…70 А/(см²•К²’); Т — абсолютная температура катода; е — основание натуральных логарифмов (е = 2,718); еφо — работа выхода электрона из металла, Дж; κ = 1,38•10‾²³ Дж/К — постоянная Больцмана.
Приведенное уравнение термоэлектронной эмиссии справедливо для металлов. Для примесных полупроводников существует несколько иная зависимость, однако качественно связь величины тока эмиссии с температурой и работой выхода остается такой же. Уравнение показывает, что величина тока эмиссии в наибольшей степени зависит от температуры катода. Однако при увеличении температуры резко возрастает скорость испарения материала катода и сокращается срок его службы. Поэтому катод должен работать в строго определенном интервале рабочих температур. Нижний предел температуры определяется возможностью получения требуемой эмиссии, а верхний — испарением или плавлением эмиттирующего материала.
Существенное влияние на величину тока эмиссии оказывает внешнее ускоряющее электрическое поле, действующее у поверхности катода. Это явление получило название эффекта Шоттки. На электрон, выходящий из катода, при наличии внешнего электрического поля действуют две силы — сила электрического притяжения, возвращающая электрон, и сила внешнего поля, ускоряющая электрон в направлении от поверхности катода. Таким образом, внешнее ускоряющее поле снижает потенциальный барьер, вследствие чего снижается работа выхода электронов из катода и увеличивается электронная эмиссия.
Фотоэлектронная эмиссия. Впервые явление фотоэлектронной эмиссии (или внешнего фотоэффекта) наблюдалось Г. Герцем в 1887 г. Экспериментальные исследования, позволившие установить количественные соотношения для фотоэлектронной эмиссии, были проведены А. Г. Столетовым в 1888 г. Основные закономерности фотоэффекта были объяснены А. Эйнштейном на основе фотонной теории света. В соответствии с этой теорией лучистая энергия может пропускаться и поглощаться не в виде непрерывного потока, а только определенными порциями (квантами), причем каждый квант обладает количеством энергии hv, где h — постоянная Планка, а v — частота излучения. Таким образом, электромагнитное излучение (видимый и невидимый свет, рентгеновское излучение и т. п.) представляет собой поток отдельных квантов энергии, получивших название фотонов. При падении на поверхность фотокатода энергия фотонов расходуется на сообщение электронам дополнительной энергии. За счет этой энергии электрон с массой me, совершает работу выхода Wo и приобретает начальную скорость Vo, что математически выражается уравнением Эйнштейна:
Электрон может выйти за пределы катода, если работа выхода меньше энергии кванта, так как лишь при этих условиях начальная скорость Vo, а следовательно и кинетическая энергия электрона:
Отметим основные особенности явления фотоэффекта:
- При облучении поверхности фотокатода лучистым потоком постоянного спектрального состава ток фотоэлектронной эмиссии пропорционален интенсивности потока (закон Столетова):
где Iф — величина фототока; Ф — величина лучистого потока; К — коэффициент пропорциональности, характеризующий чувствительность поверхности фотокатода к излучению.
- Скорость электронов, испускаемых фотокатодом, тем больше, чем больше частота v поглощаемого излучения; начальная кинетическая энергия фотоэлектронов возрастает линейно с возрастанием частоты v.
- Фотоэффект наблюдается только при облучении лучистым потоком с частотой V ≥ Vкр, где Vкр критическая частота, называемая «красной границей» фотоэффекта. Критическая длина волны:
, где с — скорость распространения электромагнитных волн. При λ > λк, фотоэлектронная эмиссия отсутствует.
- Фотоэффект практически безынерционен, т. е. нет запаздывания между началом облучения и появлением фотоэлектронов (время запаздывания не превышает 3•10∧-9 с).
Как и в случае термоэлектронной эмиссии, увеличение напряженности внешнего электрического поля у фотокатода также увеличивает фотоэлектронную эмиссию за счет снижения потенциального барьера катода. При этом порог фотоэффекта смещается в сторону более длинных воли.
Чем меньше работа выхода металла, из которого изготовлен фотокатод, тем меньше величина пороговой частоты для данного фотокатода. Например, для того чтобы фотокатод был чувствителен к видимому свету, материал его должен иметь работу выхода меньше 3,1 эВ. Такая работа выхода характерна для щелочных и щелочноземельных металлов (цезий, калий, натрий). Для увеличения чувствительности фотокатода к другим диапазонам лучистых потоков используют более сложные типы полупроводниковых фотокатодов (щелочно-водородные, кислородно-цезиевые, сурьмяно-цезиевые и др.).
Вторичная электронная эмиссия. Механизм вторичной электронной эмиссии отличается от механизма термоэлектронной и фотоэлектронной эмиссии. Если при термоэлектронной и фотоэлектронной эмиссии электроны расположенные главным образом на уровнях зоны проводимости, то при бомбардировке поверхности катода первичными электронами или ионами их энергия может поглощаться и электронами заполненных зон. Поэтому вторичная эмиссия возможна как с проводников, так и с полупроводников и диэлектриков.
Наиболее важным параметром, характеризующим вторичную электронную эмиссию, является коэффициент вторичной эмиссии σ. Он представляет собой отношение числа вылетающих с поверхности катода вторичных электронов n2, к числу падающих на катод первичным электронов n1, или же отношение тока вторичной элеронной эмиссии I2 к току первичных электронов I1:
Вторичная электронная эмиссия применяется в некоторых электронным приборах — фотоумножителях, передающих телевизионных трубках, отдельным типах электронных ламп. Однако во многим случаям, в частности в большинстве электронных ламп, она нежелательна и ее стремятся уменьшить.
Электростатическая эмиссия. Если внешнее электрическое поле у поверхности катода имеет напряженность, достаточную для полной компенсации тормозящего действия потенциального барьера, то даже при низких температурах катода кожно получить значительную электронную эмиссию. Подсчитано, что для компенсации потенциального барьера напряженность у поверхности катода должка быть порядка 10∧8 В/см. Однако уже при напряженности поля порядка 10∧6 В/см наблюдается значительная электронная эмиссия с холодных поверхностей.
Техническое получение значений напряженности поля, достаточных для возникновения электростатической эмиссии, представляет значительные трудности. Поэтому электростатическая эмиссия в основном применяется в ионных приборах с жидким ртутным катодом. В этом случае достаточную напряженность поля кожно получить за счет создании вблизи поверхности катода слоя ионизированных паров ртути.
Источник — Гершунский Б.С. Основы электроники (1977)